Cue Biopharma, Inc. (NASDAQ: CUE), a clinical-stage biopharmaceutical company engineering a novel class of injectable biologics to selectively engage and modulate targeted T cells within the body, announced today it has entered into a research collaboration agreement with Dr. Michael Dustin and the University of Oxford to determine the molecular mechanisms underlying the activity of its IL-2 based CUE-100 series Immuno-STAT™ (Selective Targeting and Alteration of T cells) Biologics.
“Cue Biopharma is pleased to enter into this strategic collaboration with Dr. Dustin and the University of Oxford,” said Saso Cemerski, senior director of immuno-oncology discovery and translational immunology at Cue Biopharma. “Dr. Dustin, the scientific pioneer and founder of the T cell immune synapse field has made seminal observations contributing toward our understanding of the biophysical interactions and signaling pathways that underscore immune cell activation, including the mechanistic underpinnings of T cell recognition of antigens. Our strategic collaboration will exploit the state-of-the art technologies pioneered by Dr. Dustin’s lab to elucidate the immune synapse interactions of our IL-2-based CUE-100 series that ultimately result in selective and specific activation of tumor-antigen-specific T cells.”
“We look forward to working with Cue Biopharma on this innovative and promising new technology. We have long appreciated the effects of IL-2 on the immunological synapse, and this research collaboration will allow us to systematically study effects of natural IL-2 and the engineered Immuno-STAT to define potential features of the Immuno-STAT platform that may be driving the selective and preferential modulation of T cells,” said Dr. Dustin, professor of immunology and Wellcome Trust Principal Research Fellow, director of research of the Kennedy Institute.
“We anticipate that the findings from this strategic research collaboration will provide important insights into the mechanism of action (MOA) of our IL-2-based CUE-100 series Immuno-STATs. Understanding the MOA will in turn enhance our ability to detect and interpret pharmacodynamic effects induced in patients treated with our lead immuno-oncology asset, CUE-101, currently being tested in patients with head and neck cancer,” said Anish Suri, Ph.D., president and chief scientific officer of Cue Biopharma. “Learnings from this important work will further advance our internal efforts to build out the Immuno-STAT platform to develop new and effective therapeutics for patients suffering from solid and hematological cancers.”
Want to publish your own articles on DistilINFO Publications?
Send us an email, we will get in touch with you.
Source: BioSpace